ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text
نویسنده
چکیده
ABNER (A Biomedical Named Entity Recognizer) is an open source software tool for molecular biology text mining. At its core is a machine learning system using conditional random fields with a variety of orthographic and contextual features. The latest version is 1.5, which has an intuitive graphical interface and includes two modules for tagging entities (e.g. protein and cell line) trained on standard corpora, for which performance is roughly state of the art. It also includes a Java application programming interface allowing users to incorporate ABNER into their own systems and train models on new corpora.
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملQuantitative Assessment of Dictionary-based Protein Named Entity Tagging
Objective: Natural language processing (NLP) approaches have been explored to manage and mine information recorded in biological literature. A critical step for biological literature mining is biological named entity tagging (BNET) that identifies names mentioned in text and normalizes them with entries in biological databases. The aim of this study was to provide quantitative assessment of the...
متن کاملResearch Paper: Quantitative Assessment of Dictionary-based Protein Named Entity Tagging
OBJECTIVE Natural language processing (NLP) approaches have been explored to manage and mine information recorded in biological literature. A critical step for biological literature mining is biological named entity tagging (BNET) that identifies names mentioned in text and normalizes them with entries in biological databases. The aim of this study was to provide quantitative assessment of the ...
متن کاملUsing Transliteration of Proper Names from Arabic to Latin Script to Improve English-Arabic Word Alignment
Bilingual lexicons of proper names play a vital role in machine translation and cross-language information retrieval. Word alignment approaches are generally used to construct bilingual lexicons automatically from parallel corpora. Aligning proper names is a task particularly difficult when the source and target languages of the parallel corpus do not share a same written script. We present in ...
متن کاملسیستم شناسایی و طبقه بندی اسامی در متون فارسی
Name entity recognition (NER) is a system that can identify one or more kinds of names in a text and classify them into specified categories. These categories can be name of people, organizations, companies, places (country, city, street, etc.), time related to names (date and time), financial values, percentages, etc. Although during the past decade a lot of researches has been done on NER in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 21 14 شماره
صفحات -
تاریخ انتشار 2005